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Abstract

We consider a particle diffusing along the links of a general graph possessing
some absorbing vertices. The particle, with a spatially dependent diffusion
constant D(x), is subjected to a drift U(x) that is defined in every point of
each link. We establish the boundary conditions to be used at the vertices and
we derive general expressions for the average time spent on a part of the graph
before absorption and, also, for the Laplace transform of the joint law of the
occupation times. Exit times distributions and splitting probabilities are also
studied and several examples are discussed.

PACS number: 05.40.Jc, 05.40.Fb

1. Introduction

For many years, graphs have interested physicists as well as mathematicians. For instance,
equilibrium statistical physics widely uses model systems defined on lattices, the most popular
being certainly the Ising model [1]. On another hand, in solid-state physics, tight-binding
models (see, for instance, [2]) involve discretized versions of Schrödinger operators on
graphs. For all those models, the thermodynamic properties of the system heavily depend
on geometrical characteristics of the lattice such as the connectivity and the dimensionality
of the embedding space. However, in general, they do not depend explicitly on the lengths
of the edges. Random walks on graphs, where a particle hops from one vertex to one of its
nearest neighbours, have also been studied by considering discrete Laplacian operators on
graphs [3].

Such Laplacian operators can also be useful if they are defined on each link of the
graph. For example, in the context of organic molecules [4], they can describe free electrons
on networks made of one-dimensional wires. Many other applications can be found in the
physical literature. Let us simply cite the study of vibrational properties of fractal structures
such as the Sierpinski gasket [5] or the investigation of quantum transport in mesoscopic
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physics [6, 7]. Weakly disordered systems can also be studied in this context [8]. It appears
that weak localization corrections in the presence of an eventual magnetic field are related to
a spectral determinant on the graph. This last quantity is actually of central importance and
interesting by itself [9, 10]. In particular, it allows us to recover a trace formula that was first
derived by Roth [11]. Moreover, the spectral determinant, when computed with generalized
boundary conditions at the vertices, is useful to enumerate constrained random walks on
a general graph [12], a problem that has been addressed many times in the mathematical
literature [13].

Brownian motion on graphs is also worthwhile to be investigated from, both, the physical
and mathematical viewpoints. For instance, the probability distribution of the time spent on a
link (the so-called occupation time) was first studied by Levy [14], who considered the time
spent on an infinite half-line by a one-dimensional Brownian motion stopped at some time t.
This work allowed Levy to discover in 1939 one of his famous arc-sine laws [15]. Since that
time, this result has been generalized to a star graph [16] and also to a quite general graph
[17]. Local time distributions have also been obtained in [18].

It was pointed out a long time that first-passage times and, more generally, occupation
times are of special interest in the context of reaction–diffusion processes [19, 20].
Computations of such quantities in the presence of a constant external field have already
been performed for one-dimensional systems with absorbing points (see, for example, [21]).
This was done with the help of a linear Fokker–Planck equation [19, 22].

The purpose of the present work is to extend those results on a general graph with some
absorbing vertices. We will consider a Brownian particle diffusing with a spatially dependent
diffusion constant and subjected to a drift that is defined in every point of each link. The paper
is organized as follows. In section 2, we present the notations that will be used throughout the
paper. We discuss the boundary conditions to be used at each vertex in section 3 and, also, in
the appendices. More precisely, we analyse in details specific graphs in appendices A and B.
The obtained results allow us to deal with a general graph in appendix C. Section 4 is devoted
to the computation of the average time spent, before absorption, by a Brownian particle on
a part of the graph. In this section, we also calculate the Laplace transform of the joint law
of the occupation times on each link. In the following section, we present additional results,
especially concerning conditional and splitting probabilities. Various examples are discussed
all along the different sections. Finally, a brief summary is given in section 6.

2. Definitions and notations

Let us consider a general graph G made of V vertices linked by B bonds of finite lengths. On
each bond [αβ], of length lαβ , we define the coordinate xαβ that runs from 0 (vertex α) to lαβ

(vertex β). (We have, of course, xβα = lαβ − xαβ .)
Moreover, we suppose that, among all the vertices, N of them are absorbing (a particle

gets trapped if it reaches such a vertex).
We will study the motion on G of a Brownian particle that starts at t = 0 from some

non-absorbing point x. The particle, with a spatially dependent diffusion constant D(x), is
subjected to a drift U(x) defined on the bonds of G. More precisely, D(x) and U(x) are
differentiable functions of x on each link. In particular, on each link [αβ], the following limits
D(αβ) ≡ limxαβ→0 D(xαβ),D′

(αβ) ≡ limxαβ→0
∂

∂xαβ
D(xαβ), U(αβ) ≡ limxαβ→0 U(xαβ), . . . , are

well defined. Such notations will be used extensively throughout the paper.
The continuity properties of D(x) and U(x) at each vertex will be discussed in the

following section.
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Figure 1. The vertex α with its nearest neighbours βi, i = 1, . . . , mα ; each link is discretized with
steps of lengths �x.

We also specify the motion of the particle when it reaches some vertex α. Let us call
βi (i = 1, . . . , mα) the nearest neighbours of α. We assume that the particle will come
out towards βi with some arbitrary probability pαβi

(
∑

i pαβi
= 1—see [16] for a rigorous

mathematical definition). Of course, pλμ = 0 if λ is an absorbing vertex or if [λμ] is not a
bond of G.

Let P(yt |x0) be the probability density to find the particle at point y at time t
(P (y0|x0) = δ(y−x)). It satisfies on each link [αβ] the backward and forward Fokker–Planck
equations:

∂P (yt |xαβ0)

∂t
= D(xαβ)

∂2P

∂x2
αβ

− ∂U(xαβ)

∂xαβ

∂P

∂xαβ

≡ L+(xαβ)P (yt |xαβ0), (1)

∂P (yαβt |x0)

∂t
= ∂

∂yαβ

[
∂

∂yαβ

(D(yαβ)P ) +
∂U(yαβ)

∂yαβ

P

]
≡ L(yαβ)P (yαβt |x0). (2)

P(αβ) will mean limxαβ→0 P(yt |xαβ0) when we use the backward Fokker–Planck equation and
limyαβ→0 P(yαβt |x0) when we use the forward equation. The derivatives P ′

(αβ) will be defined
in a similar way.

3. Boundary conditions

Let us define the following two situations that can occur at some non-absorbing vertex α:

(A) : D(x)is continuous but U(x) is not,

(B) : U(x)is continuous but D(x) is not.

The main purpose of this section is to establish the boundary conditions for P and its
derivatives that result from those discontinuities. We will not consider the case when both
U(x) and D(x) are discontinuous at the same vertex because, in our opinion, it is ill defined.

3.1. Backward Fokker–Planck equation

Let us start by considering a graph G with U(x) and D(x) constant (standard Brownian
motion). In figure 1, we display a given vertex α and its nearest neighbours βi, i = 1, . . . , mα

on G.
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The transition probabilities from α, pαβi , are not supposed to be all equal. In order to
establish the boundary conditions for the backward equation, we discretize all the links [αβi]
(and also the time) with steps of length �x (resp. �t). It is easy to realize that

P(y, (N + 1)�t |α, 0) =
mα∑
i=1

pαβi
P (y,N�t |xi, 0), (3)

P(y, (N + 1)�t |xi, 0) = 1

2
P(y,N�t |α, 0) +

1

2
P(y,N�t |x ′

i , 0). (4)

Taking the limit �x → 0,�t ∝ (�x)2, N → ∞, N�t ≡ t , we obtain, with (4),

P(αβi) = 1
2P(y, t |α, 0) + 1

2P(αβi). (5)

Thus

P(αβi) = P(y, t |α, 0) ∀i. (6)

This shows that P is continuous in α.
Moreover, expanding (3) at order �x, we get

P(y, t |α, 0) =
mα∑
i=1

pαβi
P(αβi ) + �x

(
mα∑
i=1

pαβi
P ′

(αβi )

)
+ O((�x)2). (7)

With (6) and
∑mα

i=1 pαβi
= 1, we show that

mα∑
i=1

pαβi
P ′

(αβi )
= 0. (8)

On the other hand, for pαβ1 = pαβ2 = · · · = 1/mα , equation (1) on the link [αβ] can be
written in the form

∂

∂t

(
1

D(xαβ)
e−�(xαβ )P (yt |xαβ0)

)
= ∂

∂xαβ

(
e−�(xαβ ) ∂

∂xαβ

P (yt |xαβ0)

)
, (9)

with �(xαβ) =
∫ xαβ

x0

∂U(x ′)
∂x ′

dx ′

D(x ′)
, (10)

where x0 is some point on the graph.
We are aware that �(xαβ) could be multi-valued because, in general, a graph is multiply

connected3. However, this is not the case if we restrict ourselves to the vicinity of the given
vertex α. Choosing x0 located on a link starting from α, the integral in (10) involves in a
unique way, at most, two integrals along links starting from α. It is well defined if U(x) and
D(x) are not discontinuous at the same point. So, with this definition of �(xαβ), equation (9)
is well suited to study the boundary conditions at vertex α.

Let us consider the case (A).
We assume, first, that the pαβi

’s are all equal.
Integrating (9) in the vicinity of α, we get, with D(x) continuous at α,

mα∑
i=1

e−U(αβi )
/D(α)P ′

(αβi )
= 0. (11)

Moreover, P must be continuous at α if we want the quantity e−� ∂P
∂x

to be properly defined.

3 It can also occur that �(x) is not well defined, for instance, when U(x) and D(x) are both discontinuous at the
same point x1. Indeed, 1

D(x′)
∂U(x′)

∂x′ is then proportional to δ(x′ −x1)/D(x1); thus, this quantity is not defined if D(x)

is discontinuous at x1.
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In appendix A, those boundary conditions are directly established, for the Laplace
transform of P, on a simple graph.

Still for the case (A), let us now assume that the pαβi
’s are not all equal.

In appendix C, we establish the following boundary condition that must hold for a general
graph:

mα∑
i=1

pαβi
e−U(αβi )

/D(α)P ′
(αβi )

= 0. (12)

We also show in this appendix that P is continuous in α.
Turning to the case (B), we can follow the same line as for (A) and use (9), and also

appendices A and B.
Remark that, when the pαβi

’s (i = 1, 2, . . . , mα) are all equal, the integration of (9) in
the vicinity of α will not produce an exponential factor as in (11). This is because, this time,
U(x) is continuous in α. This fact is confirmed by the direct computations performed in the
appendices. Finally, with the pαβi

’s not all equal, we get
mα∑
i=1

pαβi
P ′

(αβi )
= 0. (13)

Moreover, P is continuous for the cases (A) and (B).
In summary, for the backward Fokker–Planck equation, the condition on the derivatives

can be written as
mα∑
i=1

p′
αβi

P ′
(αβi )

= 0, (14)

with p′
αβi

= pαβi
e− U(αβi )

D(α) case (A) (15)

= pαβi
case (B). (16)

This notation will prove especially useful in the following sections where the backward
Fokker–Planck equation is widely used.

3.2. Forward Fokker–Planck equation

Coming back to figure 1 (with xi, x
′
i and �x replaced by yi, y

′
i and �y), we consider the

discretized version of the forward equation with D(x) and U(x) constant and, also, the pαβi
’s

not all equal. We have, on the link [αβi],

P(yi, (N + 1)�t |x, 0) = pαβi
P (α,N�t |x, 0) +

1

2
P(y ′

i , N�t |x, 0) (17)

P(α, (N + 1)�t |x, 0) = 1

2

mα∑
i=1

P(yi, N�t |x, 0). (18)

With the limit �y → 0,�t ∝ (�y)2, N → ∞, N�t ≡ t , (17) leads to

P(αβi) = pαβi
P (α, t |x, 0) + 1

2P(αβi). (19)

Thus
P(αβ1)

pαβ1

= P(αβ2)

pαβ2

= · · · = P(αβmα )

pαβmα

= 2P(α, t |x, 0). (20)

We see that, in general, P is not continuous in α.

5
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Moreover, expanding (18) at order �y, we get

P(α, t |x, 0) = 1

2

mα∑
i=1

(
P(αβi) + �yP ′

(αβi )

)
+ O((�y)2). (21)

With (20), we can write
mα∑
i=1

P ′
(αβi )

= 0. (22)

So, the current conservation does not involve the pαβi
’s.

Now, for pαβ1 = pαβ2 = · · · = 1/mα , equation (2) on the link [αβ] can be written as

∂

∂t
P (yαβt |x0) = ∂

∂yαβ

(
e−�(yαβ ) ∂

∂yαβ

(
D(yαβ) e�(yαβ )P (yαβt |x0)

))
, (23)

with �(yαβ) =
∫ yαβ

y0

∂U(y ′)
∂y ′

dy ′

D(y ′)
, (24)

where y0 is some point on the graph; the discussion of section 3.1 for the definition of � is, of
course, still relevant.

Following the same lines as in section 3.1, we get the current conservation at each non-
absorbing vertex α:

mα∑
i=1

((DP )′ + U ′P)(αβi ) = 0, (25)

if α is not the starting point. Otherwise, the right-hand side of (25) should be replaced by
−δ(t). (25) does not depend on the continuity properties of D(x) and U(x).

Now, let us consider the case (A) and call D(α) the diffusion constant at α.
When pαβ1 = · · · = pαβmα

, following [22], we can show that

e
U(αβ1)

D(α) P(αβ1) = e
U(αβ2)

D(α) P(αβ2) = · · · = e
U(αβmα )

D(α) P(αβmα ). (26)

When the pαβi
’s are not all equal, we use the same approach as that of appendix C and get

(A): e
U(αβ1)

D(α)
P(αβ1)

pαβ1

= e
U(αβ2)

D(α)
P(αβ2)

pαβ2

= · · · = e
U(αβmα )

D(α)
P(αβmα )

pαβmα

. (27)

Similarly, for the case (B), we obtain

(B) : D(αβ1)

P(αβ1)

pαβ1

= D(αβ2)

P(αβ2)

pαβ2

= · · · = D(αβmα )

P(αβmα )

pαβmα

. (28)

When pαβ1 = · · · = pαβmα
, it is worth noting that conditions (27) and (28) are simply obtained

if we want the quantity ∂
∂yαβ

(D(yαβ) e�(yαβ )P (yαβt |x0)), that appears in (23), to be properly
defined.

In the following section, we will check the consistency of those boundary conditions (for
the backward and the forward equations) on several examples.

4. Occupation times

4.1. Mean residence time

Let us first study the average time, 〈τ(x)〉, spent on a part D of G by the particle before
absorption. We have [21]

〈τ(x)〉 =
∫ ∞

0
dt

∫
D

dy P (yt |x0) (29)

6
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(〈τ(x)〉 is the sum of the infinitesimal residence times weighted by the probability of the
presence in D at time t).

With (1), we get for 〈τ(x)〉 the equation

L+(xαβ)〈τ(xαβ)〉 = −1D(xαβ). (30)

1D(x) is the characteristic function of the domain D: 1D(x) = 1 if x ∈ D, = 0 otherwise.
The solution writes

〈τ(xαβ)〉 =
∫ xαβ

0
duαβ φ(uαβ) + Aαβ

∫ xαβ

0
duαβ I (uαβ) + Bαβ, (31)

with

φ(xαβ) = −I (xαβ)

(∫ xαβ

0

dzαβ

D(zαβ)

1D(zαβ)

I (zαβ)

)
, (32)

I (xαβ) = exp

(∫ xαβ

0

dzαβ

D(zαβ)

∂U

∂zαβ

)
. (33)

The constants Aαβ and Bαβ are determined by imposing the boundary conditions at each
vertex. Continuity implies

lim
xαβi

→0
〈τ(xαβi

)〉 ≡ 〈τα〉 = Bαβi
(34)

and lim
xαβi

→lαβi

〈τ(xαβi
)〉 ≡ 〈τβi

〉 = K(αβi) + Aαβi
J(αβi ) + Bαβi

, (35)

where

K(αβ) =
∫ lαβ

0
duαβ φ(uαβ), (36)

J(αβ) =
∫ lαβ

0
duαβ I (uαβ). (37)

In general, K(αβ) �= K(βα), J(αβ) �= J(βα).
Of course, 〈τλ〉 = 0 if λ is absorbing. So, we will determine 〈τα〉 only for α non-absorbing.

In such a vertex, the current conservation leads to (14)–(16):∑
i

p′
αβi

Aαβi
= 0. (38)

Equations for the 〈τα〉’s can be written in a matrix form, and finally, the average time spent on
D, before absorption, by a particle starting from α is given by

〈τα〉 = det M1

det M
, (39)

where M and M1 are two (V − N) × (V − N) matrices with the elements

Mii =
∑
m

p′
im

J(im)

, (40)

Mij = − p′
ij

J(ij)

. (41)

7
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n

(c)(a)

(b)

0

0
0

1

1

1
λ

2

Figure 2. Three simple graphs that are used to compute survival times (parts (a) and (b)) or
covering time (c). In (a) and (b), the vertex 1 is absorbing. The Brownian particle starts from 0
(parts (a) and (c)) and from λ (part (b). For further explanations, see the text.

ΔU

x010x λ

U

0

Figure 3. The potential is symmetric around 0 except for a step of magnitude �U .

(In (40) and (41), i and j run only over non-absorbing vertices but m labels all kinds of
vertices.) M1 = M except for the αth column

(M1)iα = −
∑
m

p′
im

K(im)

J(im)

. (42)

We observe that, for a graph without any absorbing vertex, we have
∑

j Mij = 0 ∀i. Thus,
det M vanishes and 〈τα〉 becomes infinite as expected.

Remark also that, when D = G, τ becomes the survival time or, accordingly, the first-
passage time in any absorbing vertex.

4.1.1. Examples.

Example 1. As a first example, let us consider the case D = G for the graphs of figure 2:

In (a), the vertex 1 is absorbing and the particle starts from 0. We get

〈τ0〉 = −K(01). (43)

In (b), 1 is still absorbing and the particle starts from λ. Its probability transition in 0 is
p01 = q (p0λ = 1 − q). Moreover, we assume that l01 = l0λ, U(x01) = U(x0λ) + �U (a step
of magnitude �U occurs in 0, see figure 3) and D(x01) = D(x0λ). The mean survival time is
given by

〈τλ(q)〉 = −
(

K(01) + K(10)

q

) (
q + (1 − q) e

�U
D(0)

)
. (44)

8
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2D

1D

2U
1U

l l l l

13 0 42

U

x

x

U(x)

U(x)

Figure 4. The graph G consists in five vertices (3 and 4: absorbing, 0: starting point), U(x) is
discontinuous in 1 and 2, and D(x) is discontinuous in 0.

(c) represents a symmetric star with n legs of length l originating from 0 (p0i = 1
n

and
U(x0i ) = U(x0j ) (no step in 0 this time), D(x0i ) = D(x0j )∀i, j = 1, . . . , n). Let us compute
the average covering time 〈τc〉 (smallest time necessary to reach all the points of the star at
least once). With the notations of (43) and (44), we get, with �U = 0,

〈τc〉 = 〈τ0〉 +
n−1∑
k=1

〈τλ(1 − k/n)〉 (45)

= −K(01) − (K(01) + K(10))n

n−1∑
k=1

1

k
(46)

∼ −(K(01) + K(10))n ln n when n → ∞. (47)

(Recall that for random walks on a star, 〈τc〉 ∼ 2n ln n [23].)

Example 2. Let us consider the graph of figure 4. Among the five vertices, two are absorbing
(3 and 4). The starting point is 0. U(x) is discontinuous in vertices 1 and 2; D(x) is
discontinuous in vertex 0. All the links have the same length l. With the backward equation,
we get the mean survival time (39)

〈τ0〉 = l2

(
p01

D1
+

p02

D2

)/(
p01p13

p13 + p10 e(U1−U)/D1
+

p02p24

p24 + p20 e(U2−U)/D2

)
. (48)

Let us now compute 〈τ0〉 with the forward equation. Defining P(y) ≡ ∫ ∞
0 dtP (yt |00),

we have

on the link [31] : P(y31) = a1y31 + a2 (49)

on the link [10] : P(y01) = b1y01 + b2 (50)

on the link [02] : P(y02) = c1y02 + c2 (51)

on the link [24] : P(y42) = d1y42 + d2, (52)

9
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D1

D2

1 0 2

l2l1

x

x

U(x)

U(x)

Figure 5. The graph G consists in three vertices (2: absorbing, 0: starting point, pure reflection in
1); the drift U(x) is linear, and D(x) is discontinuous in 0.

with the boundary conditions

P(31) = 0 P(42) = 0
D1P(01)

p01
= D2P(02)

p02
(53)

eU1/D1P(13)

p13
= eU/D1P(10)

p10

eU2/D2P(24)

p24
= eU/D2P(20)

p20l
(54)

P ′
(13) + P ′

(10) = 0 P ′
(24) + P ′

(20) = 0 D2P ′
(02) + D1P ′

(01) = −1. (55)

Solving those conditions and computing 〈τ0〉 = ∫
G P(y) dy = (b2 + c2)l, we recover the result

equation (48).

Example 3. For the graph of figure 5, the starting point is 0, a pure reflection occurs in 1
(p10 = 1), and the vertex 2 is absorbing. The potential is U(x02) = ax02, U(x01) = −ax01.
With the notations of the figure and using the backward result (39), we get the mean residence
time:

on the link [10] : 〈τ0〉 = p01

p02

D2

a2
(eal2/D2 − 1)(eal1/D1 − 1) (56)

on the link [02] : 〈τ0〉 = D2

a2

(
eal2/D2 − 1 − al2

D2

)
. (57)

Taking the limit a → 0 (no drift), we obtain

on the link [10] : 〈τ0〉 = p01

p02

l1l2

D1
(58)

on the link [02] : 〈τ0〉 = l2
2

2D2
. (59)

10
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Turning to the forward equation, still with P(y) ≡ ∫ ∞
0 dtP (yt |00), we have

on the link [10] : P(y01) = c1 eay01/D1 + c2 (60)

on the link [02] : P(y02) = c3 e−ay02/D2 + c4, (61)

with the conditions

P(20) = 0
D1P(01)

p01
= D2P(02)

p02
D1P ′

(10) + aP(10) = 0 (62)

D2P ′
(02) + D1P ′

(01) + a(P(02) − P(01)) = −1. (63)

Computing 〈τ0〉 = ∫
D P(y) dy = c1

D1
a

(eal1/D1 − 1) + c2l1 for the link [10],= c3
D2
a

(1 −
e−al2/D2) + c4l2 for the link [02], we recover solutions (56) and (57).

4.2. Occupation times distribution

Still with the same conditions (drift, spatially dependent diffusion constant, absorbing
vertices, . . . ), we now study a Brownian motion stopped at t and call Tαβ the time spent
up to t on the link [αβ].

Tαβ is, of course, a random variable depending on t, and we will call Pt ({Tαβ}) the joint
distribution of the Tαβ’s.

In the following, we will focus our attention on the quantity

S(t |x0) =
∫ ∏

[αβ]

dTαβPt ({Tαβ}) e− ∑
[ij ] ξij Tij (64)

≡ 〈
e− ∑

[ij ] ξij Tij (x)
〉
, (65)

where the ξij ’s are positive constants, and 〈. . . (x)〉 stands for averaging over all the Brownian
trajectories starting from x and developing up to t in the presence of the drift.

In order to stick to S(t |x0), we slightly modify the backward equation (1) by adding, on
each link [αβ], a loss term proportional to ξαβ (ξαβ may be interpreted as a reaction rate per
unit length and time). Thus, we consider the equation

∂Q

∂t
= (L+(xαβ) − ξαβ)Q, (66)

where Q(yt |x0) represents the probability of finding the particle in y at time t, each path from
x to y being, this time, weighted by a factor e− ∑

[αβ] ξαβTαβ . (Note that Q(yt |x0) = δ(y − x) if
x is absorbing.)

It is now easy to realize that we have the relationship

S(t |x0) =
∫
G

dy Q(yt |x0). (67)

In the following, we will be especially interested in the Laplace transform of S(t |x0):

Ŝ(γ |x0) ≡ Ŝ(x) =
∫ ∞

0
dt e−γ tS(t |x0). (68)

On the bond [αβ], Ŝ(xαβ) satisfies the following equation (γαβ ≡ γ + ξαβ):

(L+(xαβ) − γαβ )̂S = −1. (69)

11
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Setting Ŝ(xαβ) = 1
γαβ

+ �(xαβ) and performing the transformation

�(xαβ) = √
I (xαβ)χ(xαβ) (70)

(I is defined in (33)), we are left with the following equation for χ :

−D
∂2χ

∂x2
αβ

+

[
1

4D

(
∂U(xαβ)

∂xαβ

)2

− D
∂

∂xαβ

(
1

2D

∂U(xαβ)

∂xαβ

)
+ γαβ

]
χ = 0. (71)

Let us call χαβ and χβα two solutions of (71) such that χαβ(α) = χβα(β) = 1, χβα(α) =
χαβ(β) = 0. So, Ŝ writes

Ŝ = 1

γαβ

+ Aαβ exp

(∫ xαβ

0

dzαβ

2D(zαβ)

∂U(zαβ)

∂zαβ

)
χαβ(xαβ)

+ Aβα exp

(∫ xαβ

lαβ

dzαβ

2D(zαβ)

∂U(zαβ)

∂zαβ

)
χβα(xαβ). (72)

The constants Aij are determined by imposing the boundary conditions. Continuity of Ŝ at
each vertex α implies

lim
xαβi

→0
Ŝ(xαβi

) ≡ Ŝα = 1

γαβi

+ Aαβi
. (73)

Moreover, if α is absorbing then Tλμ = 0 ∀ [λμ] and, from (64) and (68), we get

Ŝα = 1

γ
= 1

γαβi

+ Aαβi
. (74)

Following the same lines as for 〈τα〉, it is easy to show that the Ŝα’s (α non-absorbing)
satisfy a matrix equation with the solution

Ŝα = det R1

det R
, (75)

where R and R1 are again (V − N) × (V − N) matrices with elements

Rii =
∑
m

p′
imCim (76)

Rij = p′
ijWij , (77)

the quantities Cim and Wij being given by

Cim = lim
xim→0

(
∂χim

∂xim

+
∂U
∂xim

2D(xim)

)
, (78)

Wij = exp

(∫ 0

lij

∂U
∂xij

2D(xij )
dxij

)
lim

xij →0

∂χji

∂xij

. (79)

R1 = R except for the αth column

(R1)iα =
∑

j

p′
ij

γij

(Cij + Wij ) − 1

γ

∑
k abs.

p′
ikWik. (80)

(The last summation is performed only over absorbing vertices.)
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Setting ξij ≡ 0, we establish that det R1 = 1
γ

det R, showing that the probability
distribution Pt ({Tαβ}) is properly normalized (see (64) and (68)).

Now, let us call T ′
αβ the time spent on [αβ] before absorption. Thus, for a particle starting

from α, we can write〈
e− ∑

[ij ] ξij T
′
ij (α)

〉 = lim
t→∞

〈
e− ∑

[ij ] ξij Tij (α)
〉

(81)

and from (65) and (68) we deduce〈
e− ∑

[ij ] ξij T
′
ij (α)

〉 = lim
γ→0

(γ Ŝα). (82)

Finally, we get〈
e− ∑

[ij ] ξij T
′
ij (α)

〉 = det R(0)
1

det R(0)
, (83)

with R(0) = limγ→0 R and R
(0)
1 = R(0) except for the αth column that is given by(

R
(0)
1

)
iα

= − lim
γ→0

∑
k abs.

p′
ikWik. (84)

(84) holds because

lim
γ→0

(
γ

γij

p′
ij (Cij + Wij )

)
= 0.

This is obvious when ξij �= 0. But when ξij = 0, this is still true because, in that case,
limγ→0

(
Cij + Wij

) = 0.
Remark that (84) implies that

〈
e− ∑

[ij ] ξij T
′
ij (α)

〉 = 0 if G has no absorbing vertex (in that
case, T ′

ij = ∞).
Setting ξij ≡ ξ and

∑
[ij ] T

′
ij ≡ τ (survival time), (83) gives the expression of the Laplace

transform of the probability distribution of τ .

4.2.1. Example. To illustrate this work, let us go back to the example of figure 2 and study
the survival time (parts (a) and (b)—with �U = 0) and covering time (part (c)) distributions.

With (a), we get

〈e−ξτ0〉 = −W01

C01
(85)

(Wαβ, Cαβ, . . . are computed with γαβ = ξ ).

(b) leads to

〈e−ξτλ (q)〉 = − q

Z − 1 + q
(86)

with Z = C01C10
W01W10

.
For the covering time τc in (c) we get (with the notations of (43) and (44))

〈e−ξτc 〉 = −〈e−ξτ0〉
n−1∏
k=1

〈e−ξτλ (1 − k/n)〉 (87)

= −W01

C01

(n − 1)!

nn−1

n−1∏
k=1

1

Z − k
n

. (88)
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Computation of the first moments shows that, when n → ∞,

〈τc〉 ∝ n ln n in agreement with (47) (89)〈
τ 2
c

〉 − 〈τc〉2 ∝ n2. (90)

Then the probability distribution of the scaling variable τc/〈τc〉 becomes more and more
peaked at its mean value when n → ∞:

P

(
τc

〈τc〉 = X

)
→n→∞ δ(X − 1). (91)

5. First-passage times

This section is essentially devoted to a detailed study of exit (or survival) times. First, we
will compute exit times distributions and, after in the last parts, we will focus on quantities
concerning exit through a given absorbing vertex.

5.1. Exit times distribution

The density of exit time P(t |x0) (without specifying the absorbing vertex) is defined through
the loss of probability:

P(t |x0) dt =
∫
G

dy P (yt |x0) −
∫
G

dy P (y, t + dt |x0). (92)

Thus : P(t |x0) = − ∂

∂t

∫
G

dy P (yt |x0) ≡
∑
μ abs.

Pμ(t |x0), (93)

where Pμ(t |x0) is the density of exit time by the absorbing vertex μ.
With the forward Fokker–Planck equation, (93) leads to

P(t |x0) = −
∫
G

dyL(y)P (yt |x0) =
∑

μ abs.,i

Jμβi
(94)

Jμβi
= lim

yμβi
→0

(
∂

∂yμβi

(DP ) +
∂U

∂yμβi

P

)
(95)

= lim
yμβi

→0

(
D

∂P

∂yμβi

)
, (96)

because P(μβi) = 0 when μ is absorbing. (The βi’s are the nearest neighbours of μ on G.)
We deduce that Pμ(t |x0) is the probability current at vertex μ: Pμ(t |x0) = ∑

i Jμβi
.

Let us compute the Laplace transform, P̂(γ |x0), of P(t |x0). With (93), we get

P̂(γ |x0) =
∫ ∞

0
dt e−γ t

(
− ∂

∂t

∫
G

dy P (yt |x0)

)
≡

∑
μ abs.

P̂μ(γ |x0) (97)

= 1 − γ

∫ ∞

0
dt e−γ t

∫
G

dy P (yt |x0). (98)
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The backward Fokker–Planck equation gives

L+P̂(γ |x0) = γ P̂(γ |x0) (99)

and L+P̂μ(γ |x0) = γ P̂μ(γ |x0). (100)

Defining P̂μ,α = lim
xαi→0

P̂μ(γ |xαi0), we remark that

for an absorbing vertex λ : P̂μ,λ = δμλ. (101)

This is because Pμ(t |λ0) = δ(t) if λ = μ (102)

= 0 otherwise. (103)

Following section 4.2, we readily find, for a particle starting from α (non-absorbing), the
Laplace transform of the exit (by the vertex μ) time distribution:

P̂μ,α = det R(μ,α)

2

det R
, (104)

where R
(μ,α)

2 = R except for the αth column(
R

(μ,α)

2

)
iα

= −p′
iμWiμ. (105)

R and Wiμ are defined in (76)–(79) and computed here, with ξαβ ≡ 0 (p′
iμ is defined in

(15)–(16)).

5.2. Splitting probabilities

For a particle starting at x, we define the splitting probability �μ(x) as the probability of ever
reaching the absorbing vertex μ (rather than any other absorbing vertex). Such a quantity
has already been considered for one-dimensional systems [24] (see also [25] for extensions to
higher-dimensional systems).

We have, obviously,

�μ(x) =
∫ ∞

0
dt Pμ(t |x0) = P̂μ(γ = 0|x0). (106)

Setting γ = 0 in (100) we see that �μ(x) satisfies, on [αβ], the backward equation

L+(xαβ)�μ(xαβ) = 0. (107)

The probability, �μ,α , for a particle starting from the vertex α to be absorbed by μ, is
defined as �μ,α = limxαi→0 �μ(xαi).

With (106) and (101), it is easy to realize that,

for an absorbing vertex λ, �μ,λ = δμλ. (108)

Following the same lines as previously (see section 4.1), we find that �μ,α (α non-
absorbing) is again written as the ratio of two determinants:

�μ,α = det M(μ,α)

2

det M
, (109)

where M
(μ,α)

2 = M except for the αth column(
M

(μ,α)

2

)
iα

= p′
iμ

J(iμ)

(110)

(M is defined in (40) and (41) and J(iμ) in (37)).
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With simple manipulations on determinants, we check the normalization condition∑
i abs. �i,α = 1.

Let us, for one moment, comment on the case when there is no drift (U(x) constant but
D(x) variable, eventually discontinuous at some vertices). In that case p′

ij = pij and, also,
J(ij) = lij . We conclude that the splitting probabilities do not depend on the varying diffusion
constant when there is no drift. This fact can be understood in the following way. Let us
consider a discretization of each link and a continuous time. Modifying the diffusion constant
amounts to change the waiting time at each site of the discretized graph. But, this would not
change the trajectories if there is no drift. Only the time spent is changed. Finally, the splitting
probabilities remain unaffected4 by a change of D(x).

5.2.1. Example. Let us consider a star graph without drift. The root 0 has m0 neighbours,
all absorbing. The m0 links have lengths l0i , i = 1, . . . , m0. With (109), we obtain

�i,0 =
(

p0i

l0i

) / (
m0∑

m=1

p0m

l0m

)
. (111)

5.3. Conditional mean first-passage times

We now turn to the study of the conditional mean first-passage time 〈tμ(x)〉, which is defined
as the mean exit time, given that exit is through the absorbing vertex μ (rather than any other
absorbing vertex). We set 〈tμ,α〉 = limxαi→0〈tμ(xαi)〉.

Actually, it is simpler to first compute the quantity θμ(x) ≡ �μ(x)〈tμ(x)〉.
Indeed, we have

θμ(x) =
∫ ∞

0
dt tPμ(t |x0), (112)

L+θμ(x) =
∫ ∞

0
dt t

∂

∂t
Pμ(t |x0) = −

∫ ∞

0
dt Pμ(t |x0). (113)

So, we get L+θμ(x) = −�μ(x). (114)

Moreover, for any absorbing vertex λ, we get θμ,λ = �μ,λ〈tμ,λ〉 = δμ,λ〈tμ,μ〉 = 0 because
〈tμ,μ〉 = 0.

Thus, comparing this equation with equation (30), we find, for a particle starting from the
vertex α,

�μ,α〈tμ,α〉 = det M(μ,α)

3

det M
, (115)

where M
(μ,α)

3 = M except for the αth column:(
M

(μ,α)

3

)
iα

=
∑
m

p′
im

K̃
(μ)

(im)

J(im)

(116)

with

K̃
(μ)

(ij) =
∫ lij

0
duij I (uij )

(∫ uij

0
dzij

�μ(zij )

D(zij )I (zij )

)
. (117)

4 For a graph G without drift, we could expect, with the same argument, that the average time spent on a part D of G
would not depend on the diffusion constant on the rest, G\D, of the graph. This is exactly what can be checked with
formulae (39)–(42) of section 4.1 and, also, with formulae (58) and (59) of example 3 of section 4.1.1.
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In this last equation, �μ(zij ) has to be computed by the equation

�μ(zij ) = �μ,i +
�μ,j − �μ,i

J(ij)

∫ zij

0
duij I (uij ), (118)

with �μ,i given by equation (109).

5.3.1. Example. With the same star graph as in section 5.2.1 (no drift) and a diffusion
constant equal to D0i on each link [0i], we get (111) and (115):

〈tμ,0〉 = 1

6

l2
0μ

D0μ

+
1

3

(
m0∑

m=1

p0m

l0m

D0m

) / (
m0∑

m=1

p0m

l0m

)
. (119)

6. Summary

We have used the Fokker–Planck equation (mainly the backward one) to compute some
quantities relevant for the study of a Brownian particle moving on a graph. This particle,
moving with a varying diffusion constant, is also subjected to a drift.

Being aware that this point is somewhat controversial (see, for instance, [26]), we have
discussed in great details the boundary conditions in vertices where either U(x) or D(x) is
discontinuous. Two appendices support the study of those boundary conditions.

Those preliminaries allowed us to deal with various quantities such as the mean residence
time, the occupation times probabilities, the splitting probabilities and the conditional mean
first-passage time. In each case, we have established general formulae that can be used for all
kinds of graphs.

Finally, we have checked, on several examples, the consistency of the boundary conditions
that we have put forward.

Appendix A. Backward equation: boundary conditions when p01 = p02

For a direct computation of the boundary conditions, it is simpler to consider the Laplace
transform:

Ŝ(γ |x0) =
∫ ∞

0
dt e−γ t

∫
G

dy P (yt |x0) (A.1)

that satisfies the backward equation (̂S(γ |x0) ≡ Ŝ(x)):

(L+ − γ )̂S(x) = −1. (A.2)

First, we want to study the case (A).
For the simple graph of figure A1(a), D(x) is continuous and U(x) is discontinuous at

the vertex 0. In particular, U(01) ≡ U1 �= U(02) ≡ U2;D(0) ≡ D. Moreover, vertices 1 and 2
are absorbing and, in 0, the transition probabilities are equal: p01 = p02 = 1/2.

Now, let us add to this graph, the link [03] of length L (see figure A1(b)) in such a way
that nothing is changed for the rest (for example, the potential on the link [02] of the original
graph is the same as that on the link [32] of the modified graph, . . . ). On [03], we define
U(x03) = (

U2−U1
L

)
x03 + U1 and D(x03) ≡ D. When L → 0, we recover figure A1(a).

Working with this modified graph, the solution of (A.2) writes

on the link [10] : Ŝ(x10) = 1/γ + a1φ1(x10) + a2φ2(x10) (A.3)

on the link [03] : Ŝ(x03) = 1/γ + c1 er+x03 + c2 er−x03 (A.4)

17



J. Phys. A: Math. Theor. 42 (2009) 015004 O Bénichou and J Desbois

U1

U 2 U 2

l 2

l 2

L+l 2
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(a) (b)

Figure A1. In part (a) a simple graph with the absorbing vertices 1 and 2; the potential is
discontinuous in 0. In part (b), we add the link [03] (length L) and, on this link, a potential that
interpolates linearly between U1 and U2; D(x) is constant on [03].

on the link [32] : Ŝ(x32) = 1/γ + b1ψ1(x32) + b2ψ2(x32) (A.5)

with

r± = A ±
√

A2 + 4γD

2D
(A.6)

A = U2 − U1

L
. (A.7)

φ1,2 and ψ1,2 are solutions of the equation (L+ − γ )φ = 0 that satisfy (φ(αβ) ≡
limxαβ→0 φ(xαβ)):

φ1(10) = 0 φ1(01) = 1 φ2(10) = 1 φ2(01) = 0 (A.8)

ψ1(32) = 1 ψ1(23) = 0 ψ2(32) = 0 ψ2(23) = 1. (A.9)

U(x) and D(x) are continuous everywhere on the graph. So, we write standard boundary
conditions at the vertices (continuity of Ŝ and its derivative at vertices 0 and 3; Ŝ = 0 at
vertices 1 and 2). We obtain

(
φ′

(αβ) ≡ limxαβ→0
∂φ(xαβ )

∂xαβ

)
a2 = b2 = − 1

γ
a1 = c1 + c2 b1 = c1 er+L + c2 er−L (A.10)

a1φ
′
1(01) + a2φ

′
2(01) + c1r+ + c2r− = 0 (A.11)

b1ψ
′
1(32) + b2ψ

′
2(32) − c1r+ er+L − c2r− er−L = 0. (A.12)

After some algebra, we get the results

Ŝ(32)

Ŝ(01)

=
1
γ

+ b1

1
γ

+ a1
→L→0 1, (A.13)
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Figure A2. (a) The same graph as in figure A1(a) but this time D(x) is discontinuous in 0; in part
(b), a parabolic interpolation is used to make D(x) continuous; U(x) is constant on the link [03].

Ŝ ′
(32)

Ŝ ′
(01)

= b1ψ
′
1(32) + b2ψ

′
2(32)

a1φ
′
1(01) + a2φ

′
2(01)

→L→0 − e(U2−U1)/D. (A.14)

When L → 0, the vertex 3 moves to 0 and equations (A.13) and (A.14) give, for the original
graph,

Ŝ(01) = Ŝ(02) (A.15)

Ŝ ′
(01) e−U(01)/D(0) + Ŝ ′

(02) e−U(02)/D(0) = 0. (A.16)

In particular, we observe that Ŝ is continuous at 0 and that exponential factors appear in the
condition involving the derivatives.

Let us now turn to the case (B), still with the same graph and p01 = p02 = 1/2.
This time (figure A2(a)), D(x) is discontinuous at 0 and U(x) is continuous. We set

D(01) ≡ D1 �= D(02) ≡ D2, U(0) ≡ U .
As we already did for the case (A), we modify the graph and obtain figure A2(b). Between

vertices 0 and 3, we choose U(x03) = U and D(x03) = ((√
D2−

√
D1

L

)
x03 +

√
D1

)2 ≡ (ax03 +b)2.
Thus, in the modified graph, D(x) and U(x) are continuous everywhere on the graph.

On the links [10] and [32], the solution of equation (A.2) is still given by (A.3) and (A.5)
(with conditions (A.8) and (A.9)). But, on the link [03], (A.4) has to be replaced by

Ŝ(x03) = 1/γ + c1(ax03 + b)λ+ + c2(ax03 + b)λ− , (A.17)

with λ± = 1

2
± 1

2

√
1 +

4γ

a2
(A.18)

a =
√

D2 − √
D1

L
. (A.19)
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Figure A3. (a) The same graph as in figure A1(a) but this time p01 �= p02; in (b), U(x) and D(x)

are constant on the added links [40] and [03]; D(x) is still continuous on the modified graph.

Standard boundary conditions imply

a2 = b2 = − 1

γ
a1 = c1D

λ+/2
1 + c2D

λ−/2
1 b1 = c1D

λ+/2
2 + c2D

λ−/2
2 (A.20)

a1φ
′
1(01) + a2φ

′
2(01) + a

(
c1λ+D

(λ+−1)/2
1 + c2λ−D

(λ−−1)/2
1

) = 0 (A.21)

b1ψ
′
1(32) + b2ψ

′
2(32) − a

(
c1λ+D

(λ+−1)/2
2 + c2λ−D

(λ−−1)/2
2

) = 0. (A.22)

Finally, we get

Ŝ(32)

Ŝ(01)

=
1
γ

+ b1

1
γ

+ a1
→L→0 1, (A.23)

Ŝ ′
(32)

Ŝ ′
(01)

= b1ψ
′
1(32) + b2ψ

′
2(32)

a1φ
′
1(01) + a2φ

′
2(01)

→L→0 −1. (A.24)

When L → 0, we get, for the original graph, Ŝ continuous in 0 and

Ŝ ′
(01) + Ŝ ′

(02) = 0. (A.25)

Appendix B. Backward equation: boundary conditions when p01 �= p02

We want to study the case (A) (U(x) discontinuous in 0) for the graph of figure A3(a) with,
this time, p01 �= p02.

Modifying this graph, we obtain a new one, consisting in five vertices, displayed in
figure A3(b). Vertices 1 and 2 are still absorbing. We set p41 = p40 = p30 = p32 = 1/2 but
p04 �= p03 (p04 = p01(original graph) and p03 = p02(original graph)).

U(x)(resp. D(x)) is set equal to some constant U(resp. D) on the added links [40]
and [03]. U(x) is discontinuous at vertices 4 and 3. With the modified graph, we can take
advantage of the computations of the boundary conditions performed at the beginning of
section 3 and also in appendix A.
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The solution of equation (A.2) writes

on the link [14] : Ŝ(x14) = 1/γ + a1φ1(x14) + a2φ2(x14) (B.1)

on the link [40] : Ŝ(x40) = 1/γ + b1 sinh(
√

γ /Dx40) + b2 sinh(
√

γ /D(L − x40)) (B.2)

on the link [03] : Ŝ(x03) = 1/γ + c1 sinh(
√

γ /Dx03) + c2 sinh(
√

γ /D(L′ − x03)) (B.3)

on the link [32] : Ŝ(x32) = 1/γ + d1ψ1(x32) + d2ψ2(x32). (B.4)

As before, φ1,2 and ψ1,2 are solutions of the equation (L+ − γ )φ = 0 that satisfy

φ1(14) = 0 φ1(41) = 1 φ2(14) = 1 φ2(41) = 0 (B.5)

ψ1(32) = 1 ψ1(23) = 0 ψ2(32) = 0 ψ2(23) = 1. (B.6)

The boundary conditions in 0 are given by the beginning of section 3.1. Ŝ is continuous and

p04Ŝ
′
(04) + p03Ŝ

′
(03) = 0. (B.7)

For vertices 4 and 3, we use the result of appendix A (case (A)). Ŝ is again continuous and

Ŝ ′
(41) e−U1/D + Ŝ ′

(40) e−U/D = 0 (B.8)

Ŝ ′
(30) e−U/D + Ŝ ′

(32) e−U2/D = 0. (B.9)

We get the relationships

a2 = d2 = − 1

γ
a1 = b2 sinh(

√
γ /DL) d1 = c1 sinh(

√
γ /DL′) (B.10)

b1 sinh(
√

γ /DL) = c2 sinh(
√

γ /DL′) (B.11)

p04(−b1 cosh(
√

γ /DL) + b2) + p03(c1 − c2 cosh(
√

γ /DL′)) = 0 (B.12)

(a1φ
′
1(41) + a2φ

′
2(41)) e−U1/D +

√
γ /D(b1 − b2 cosh(

√
γ /DL)) e−U/D = 0 (B.13)

(d1ψ
′
1(32) + d2ψ

′
2(32)) e−U2/D −

√
γ /D(c1 cosh(

√
γ /DL′) − c2) e−U/D = 0. (B.14)

Solving and taking the limit L,L′ → 0, we are left with

Ŝ(32)

Ŝ(41)

=
1
γ

+ d1

1
γ

+ a1
→L,L′→0 1 (B.15)

Ŝ ′
(32)

Ŝ ′
(41)

= d1ψ
′
1(32) + d2ψ

′
2(32)

a1φ
′
1(41) + a2φ

′
2(41)

→L,L′→0 e
U2−U1

D

(
−p04

p03

)
. (B.16)

When L,L′ → 0, the vertices 3 and 4 move to 0 and we get5

Ŝ(02) = Ŝ(01), (B.17)

p02Ŝ
′
(02) e−U(02)/D(0) + p01Ŝ

′
(01) e−U(01)/D(0) = 0. (B.18)

5 Recall that p04 = p01(original graph) and p03 = p02(original graph).
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Figure B1. (a) The same graph as in figure A2(a) but this time p01 �= p02; in (b), U(x) and D(x)

are constant on the added links [40] and [03]; U(x) is still continuous on the modified graph.

We also observe that

Ŝ(03)

Ŝ(30)

→L,L′→0 1 (B.19)

Ŝ ′
(03)

Ŝ ′
(30)

→L,L′→0 −1. (B.20)

Those relationships will prove useful in appendix C.
The solution for the case (B) (figure 9 (a), p01 �= p02) is immediate.
Indeed, we see that for the modified graph (figure B1(b)) we have, formally, the same

solution as equations (B.1)–(B.4) and the same boundary conditions but, this time with
U1 = U2 = U . It amounts to drop the exponential factors in (B.8) and in all the equations
that follow. Finally, we get that Ŝ is continuous and

p02Ŝ
′
(02) + p01Ŝ

′
(01) = 0. (B.21)

Moreover, (B.19) and (B.20) still hold.

Appendix C. Backward equation: general boundary conditions

For the case (A), let us assume that the pαβi
’s are not all equal. In figure B2(a), where a given

vertex α and its mα nearest neighbours are shown, we suppose that U(x) is discontinuous in
α and (D(x) is continuous, D(x) ≡ D(α) in α).

In part (b), we slightly modify the graph along the same lines as in appendix B. We add
vertices μi in such a way that each new link [μiβi] is identical to the original link [αβi] (same
length, same potential and diffusion constant). Moreover, in the added subgraph (figure B2(b),
heavy lines of lengths L) the potential and the diffusion constant are assumed to be constant
(respectively equal to some value U and to D(α)). So, in the vicinity of α, the discontinuities
of U(x) will occur at the μi’s (D(x) will be continuous in the same domain). Of course, for
the transition probabilities from α, we choose pαμi

= pαβi
. By taking the limit L → 0, we

will recover the original graph.
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β
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Figure B2. (a) the vertex α with its nearest neighbours βi, i = 1, . . . , mα ; (b) we have added the
heavy lines where the potential is set equal to some constant U, and the diffusion constant is equal
to D(α); for the rest of the graph, nothing has been changed. For further explanations, see the text.

Now, for the small subgraph where U(x) and D(x) are constant, we can take advantage
of the result, equation (8), to write

mα∑
i=1

pαμi
P ′

(αμi)
= 0. (C.1)

Moreover, for the vertex μi , where pμiα = pμiβi
= 1/2, we can use (11) and also (A.16)

(directly established in appendix A) to get

e−U/D(α)P ′
(μiα) + e−U(μi βi )

/D(α)P ′
(μiβi )

= 0. (C.2)

Weighting with pαβi
(≡pαμi

) and summing over i, we deduce
mα∑
i=1

pαβi
e−U(μi βi )

/D(α)P ′
(μiβi )

= −e−U/D(α)

(
mα∑
i=1

pαμi
P ′

(μiα)

)
. (C.3)

Now, taking the limit L → 0, we have from (B.20) (appendix B),

P ′
(μiα)

P ′
(αμi)

→L→0 −1. (C.4)

In this limit, the vertex μi moves to α and we recover the original graph. Finally, with (C.1),
(C.3) and (C.4), we obtain, for the case (A), the boundary condition6

mα∑
i=1

pαβi
e−U(αβi )

/D(α)P ′
(αβi )

= 0. (C.5)

Moreover, for the modified graph, P is continuous in α and in μi . From appendix B, we know
that (B.19)

P(μiα)

P(αμi)

→L→0 1. (C.6)

That is enough to conclude that, for the original graph, P is continuous in α.

6 Remark that (C.5) is unchanged when we add a constant to U(x). Now, if we want to consider the case when
U(x) and D(x) are both discontinuous at some vertex α, we must add, on each link, vertices μi and μ′

i where either
D(x) or U(x) is discontinuous. The resulting boundary condition will depend on the repartition of those additional
vertices. Moreover, inconsistencies will appear when we add a constant to U(x). This is why we say that, in our
opinion, this problem is ill defined.
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